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Microstructure stability of fine-grained silicon
carbide ceramics during annealing
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Fine-grained silicon carbide ceramics with an average grain size of ~140 nm or smaller
were prepared by low-temperature hot-pressing of very fine 8-SiC powders using
Al,03-Y,03-Ca0 (AYC) or Y-Mg-Si-Al-O-N glass (ON) as sintering additives. The
microstructure stability of the resulting fine-grained SiC ceramics was investigated by
annealing at 1850°C and by evaluating quantitatively the grain growth behavior using
image analysis. The 8 — a phase transformation of SiC in AYC-SiC was responsible for the
accelerated abnormal grain growth of platelet-shaped grains. In contrast, the 8 — « phase
transformation in ON-SiC was suppressed, which resulted in a very stable microstructure.
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1. Introduction

Silicon carbide is difficult to densify without sintering
additives because of its low self-diffusion coefficients
and the covalent nature of the Si—C bond. Therefore,
sintering additives are commonly used to attain full den-
sification. Densification is achieved in solid-state sin-
tering by using B and C additives, and in liquid-phase
sintering by using metal oxide additives. The interest in
liquid-phase sintered SiC has grown continually during
recent years because such materials are easier to pro-
cess and seem to have superior mechanical properties
than solid-state sintered SiC [1-4]. The development
of platelet grains into fine matrix grains during sin-
tering or annealing is advantageous in the toughening
of ceramics. These platelet grains can act as reinforc-
ing agents that promote crack bridging and deflection,
which result in improved toughness [1, 5]. Thus, many
attempts have been made to develop the composite-
type microstructures during sintering and/or annealing
[6-8]. The evolution of the bimodal microstructure has
been attributed to the § — « phase transformation of
SiC and/or the accelerated solution-reprecipitation by
seeding during liquid-phase sintering [1, 6, 8]. Opti-
mization of mechanical properties has been conducted
through microstructure control [7, 8].

It has also been shown that the SiC ceramics with
fine grains (<300 nm) and homogeneous microstruc-
tures exhibit superplasticity. The superplasticity of SiC
was reported in both the solid-state-sintered 8-SiC with
a grain size of 200 nm (~140% elongation) [9] and
the liquid-phase-sintered §-SiC with a grain size of
230 nm (~150% elongation) [10]. A fine initial grain
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size and a low grain-growth rate are especially im-
portant for superplastic deformation. It has been sug-
gested that both grain size and grain size distribution
are important parameters for obtaining superplasticity
because dynamic grain growth is responsible for strain-
hardening in ceramics during superplastic deformation
[10, 11]. Thus, it is important to evaluate microstruc-
tural stability by investigating grain growth behavior
during annealing. Although the effects of processing
parameters on microstructural development have been
studied extensively [6, 12, 13], the evaluation of mi-
crostructure stability with respect to sintering addi-
tive composition has received less attention. Nader
et al. [6] reported that pure «-SiC and B-SiC do not
transform with an Y,0O3-AIN additive system, and thus
result in a stable microstructure. They also showed
that the 8 — o phase transformation rate decreases
with an increasing B-content in the starting powder as
well as in the presence of nitrogen. Ortiz ef al. [14]
found that the presence of nitrogen stabilizes the 8-
phase, which also correspondingly generates stable
microstructures.

In this work, the fabrication of fine-grained SiC ce-
ramics have been attempted by starting from very fine
(~30 nm) B-SiC powder with an Al,03-Y,03-CaO
(AYC) or a Y-Mg-Si-Al-O-N glass (ON) as sinter-
ing additives. The microstructure stability of the fine-
grained SiC ceramics was investigated by annealing the
ceramics forup to 12 h at 1850°C, followed by an obser-
vation of the resulting microstructures using scanning
electron microscopy (SEM). The SEM images were
then characterized using image analysis.
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2. Experimental procedure

Pure, ultrafine 5-SiC powder (designated as T1F) was
prepared by oxidizing commercially available g-SiC
powder (T-1 grade, Sumitomo-Osaka Cement Co.,
Tokyo, Japan) to eliminate free carbon and by treat-
ing it with hydrofluoric acid to remove SiO,. The par-
ticle size, oxygen content, free carbon content and
polytype of the T1F powder were 30 nm, 1.83 wt%,
1.75 wt% and B-SiC, respectively. A mixture of SiO;
(Reagent Grade, Kanto Chemical Co., Inc., Tokyo,
Japan), MgO (High-Purity Grade, Wako Pure Chem-
ical Industries, Ltd., Osaka, Japan), Y,03 (99.9% pure,
Shin-Etsu Chemical Co., Tokyo, Japan), Al,O3 (99.9%
pure, Sumitomo Chemical Co., Tokyo, Japan), and AIN
(Grade F, Tokuyama Soda Co., Tokyo, Japan) pow-
ders was prepared to an oxynitride composition of
Yo.124Mg0.160510.414 Al 30201.400No.151 by ball milling
in ethanol for 24 h using SiC media and a jar. A combi-
nation of 90 wt% T1F with 10 wt% oxynitride glass was
milled in ethanol for 24 h using SiC balls and a jar. The
powder mixture of ON-SiC was dried and hot-pressed
at 1800°C for 1 h under a pressure of 20 MPa in a nitro-
gen atmosphere. To prepare a powder composition for
AYC-SiC, 90 wt% T1F, 7 wt% Al,O3,2 wt% Y,03, and
1 wt% CaO (High Purity Grade, Wako Chemical Co.,
Osaka, Japan) were ball milled in ethanol for 24 h using
SiC balls and a jar. The powder mixture for AYC-SiC
was dried and hot-pressed at 1750°C for 30 min un-
der a pressure of 20 MPa in an argon atmosphere. The
hot-pressed specimens were heated further at 1850°C
for 6 h or 12 h under an atmospheric pressure of ar-
gon (AYC-SiC) or nitrogen (ON-SiC) to enhance grain
growth.

Sintered density was determined by the Archimedes
method. The theoretical densities of the specimens,
3.207 g/cm® for ON-SiC and 3.278 g/cm® for AYC-
SiC, were calculated according to the rule of mix-
tures (the theoretical density of the oxynitride glass
was 3.18 g/cm?) [15]. The hot-pressed and annealed
specimens were cut and polished, then etched by a CF,4
plasma containing 7.8% O,. The microstructures were
observed by SEM. SEM micrographs were quantita-
tively analyzed using an image analyzer (Image-Pro
Plus, Media Cybernetics, USA). The grain diameter
was defined by the equivalent diameter of each grain
area in the two-dimensional image. The average grain
size was determined from the 50% value of the cumula-
tive area curve of grain diameter. The three-dimensional
morphology of SiC grain was a hexagonal platelet. The
thickness of each grain (¢) was determined directly from
the smallest grain dimension in its two-dimensional im-
age; the apparent length of each grain (L) was obtained
from the largest dimension. The mean value of the 10%
highest observed aspect ratio (L /) was taken to be the
mean of the actual values (Rgs) [16].

3. Results and discussion

Relative densities of >98.0% were achieved by hot-
pressing and subsequent annealing for all specimens
(Table I). The maximum hot-pressing temperatures
of 1750 and 1800°C were high enough for AYC-SiC
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TABLE 1 Relative density and polytype of hot-pressed and annealed
specimens

Crystalline phase

Material Relative density (%) Major Minor

Hot-pressed 98.9 B-SiC -
AYC-SiC

6 h annealed 98.5 B-SiC a-SiC
AYC-SiC

12 h annealed 98.1 «-SiC B-SiC
AYC-SiC

Hot-pressed 99.5 B-SiC -
On-SiC

6 h annealed 99.4 B-SiC -
On-SiC

12 h annealed 99.2 B-SiC -
On-SiC

and ON-SiC, respectively, to successfully yield high-
density specimens. The temperature was about 50°C
or 100°C lower than that for submicrometer powders.
The fine starting powder and low sintering temperature
were effective in minimizing grain growth during sin-
tering. The typical microstructures of hot-pressed and
annealed specimens are shown in Figs 1 and 2. The mi-
crostructures of hot-pressed specimens were very fine
and uniform, consisting of equiaxed grains (Figs la
and 2a). This kind of microstructure had not been at-
tained from submicrometer powders because of the
presence of nuclei for abnormal grain growth [17, 18].
The average grain sizes of AYC-SiC and ON-SiC were
~120 and ~140 nm, respectively. The grain growth
during the sintering was very small. It was based on
the elimination of large nuclei from the starting pow-
der, as well as the narrow distribution of the starting
powder.

The microstructure of AYC-SiC after 6 h annealing
showed abnormal grain growth in a small number of
grains (Fig. 1b). The microstructure of 6 h annealed
AYC-SiC consisted of platelet grains and equiaxed
grains, and further annealing up to 12 h led to the
remarkable growth of platelet grains. In contrast, the
microstructures of 6 and 12 h annealed ON-SiC con-
sisted of equiaxed grains only (Fig. 2b and c). The
major phase of ON-SiC was 8-SiC for both the hot-
pressed and the annealed specimens. Previous results
[19, 20] have shown that the oxynitride glass main-
tains B-SiC up to 2000°C and microscopically, S-SiC
has an equiaxed morphology in nitrogen-containing liq-
uid. Present results suggest that the microstructure of
ON-SiC is more stable than that of AYC-SiC. This ef-
fect is also related to the fact that the fine-grained SiC
ceramics sintered with oxynitride glass showed no ap-
preciable grain growth during superplastic deformation
[10, 21].

The introduction of large grains as seeds results in
the different grain size distribution and, thus, different
microstructure [7, 8, 22]. The grain size distributions of
the hot-pressed and the annealed specimens are shown
in Fig. 3. The grain size distributions of both hot-
pressed AYC-SiC and hot-pressed ON-SiC are almost
the same. In contrast, the bimodal microstructure was
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Figure 1 Microstructures of hot-pressed and annealed specimens: (a)
hot-pressed AYC-SiC, (b) 6 h annealed AYC-SiC, and (c) 12 h annealed
AYC-SiC.

produced in AYC-SiC after annealing, whereas the
unimodal microstructure was formed in ON-SiC. The
difference in the microstructure of annealed speci-
mens originated from the difference in the additive
composition.

Phase analysis of the hot-pressed and annealed spec-
imens by XRD showed the occurrence of the 8 — «
phase transformation of SiC in annealed AYC-SiC
(Table I). The result clearly shows that the § — «
phase transformation accelerated the growth of large
grains during annealing. This suggests that a homo-
geneous microstructure cannot be maintained if the
occurrence of the phase transformation is favored dur-
ing annealing. Nader et al. [6] also reported that the
suppression of the 8 — « phase transformation led to
a homogeneous microstructure consisting of equiaxed
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Figure 2 Microstructures of hot-pressed and annealed specimens: (a)
hot-pressed ON-SiC, (b) 6 h annealed ON-SiC, and (c) 12 h annealed
ON-SiC.

grains, even for long sintering times, whereas a signif-
icant change in grain morphology was observed in the
presence of the phase transformation.

The changes of grain size and aspect ratio with an-
nealing time are shown in Fig. 4. The grain size of
ON-SiC increased gradually with annealing time. In
contrast, the grain size of AYC-SiC increased gradually
up to 6 h and rapidly up to 12 h-annealing, owing to
the morphological change of SiC grains from equiaxed
to platelet grains, i.e., the occurrence of the § — «
phase transformation of SiC. The average grain size
in AYC-SiC increased more than 19 times the original
during annealing at 1850°C for 12 h. By contrast, the
increase was only about 4 times the original size after
annealing at 1850°C for 12 h in ON-SiC. This might be
due to different mechanisms in grain growth of the two
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Figure 3 Grain size distribution revealed by the relation between grain
size and areal frequency for hot-pressed, 6 h annealed and 12 h annealed:
(a) AYC-SiC and (b) ON-SiC.

specimens. Most of the platelet grains in Fig. 2c show
a core/rim structure, indicating grain growth through
solution-reprecipitation [23]. The occurrence of phase
transformation (see Table I) accelerated grain growth in
AYC-SiC. Thus, both the solution-reprecipitation and
the phase transformation are responsible for the rapid
grain growth rate in AYC-SiC, whereas only solution-
reprecipitation is observed in ON-SiC. Thus, the grain
growth rate depends on both the chemistry of sinter-
ing additives and the occurrence of the phase transfor-
mation. Slow grain growth rate in ON-SiC is the basis
for the superplasticity of fine-grained or nanostructured
SiC ceramics.

The change of aspect ratio in AYC-SiC showed the
same tendency as that characteristic of grain size. How-
ever, the aspect ratio of ON-SiC was kept constant dur-
ing the annealing, owing to the normal grain growth
during annealing. The result also shows that the grain
growth of B-SiC is isotropic whereas that of «-SiC is
anisotropic.

From the above results it can be concluded that the
microstructure of ON-SiC is more stable than that of
AYC-SiC. The stable microstructure of ON-SiC is con-
firmed by small grain growth and almost no change
in aspect ratio even after 12 h-annealing at 1850°C
(Fig. 4). Strain hardening has been observed during
superplastic deformation of AYC-SiC [18]. The rate of
deformation decreased under a constant applied stress
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Figure 4 Change of (a) grain size and (b) aspect ratio of SiC grains in
AYC-SiC and ON-SiC as a function of annealing time at 1850°C.

due to dynamic grain growth during the deformation.
Considering the previous work on superplastic defor-
mation [10, 18], as well as our present work, microstruc-
ture stability is one of the necessary conditions for the
development of superplastic ceramics.

4. Conclusions

The microstructure stability for superplastic deforma-
tion can be achieved by selecting both an additive com-
position that suppresses the phase transformation dur-
ing superplastic deformation and a fine (<100 nm)
starting powder with narrow particle size distribution.
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